2004 BASS Symposium

Breast Cancer Chemotherapy *Treatment, Design, & Recent Advances* Dedicated to a Beloved Friend, Dr. J.P. Hsu

Kao-Tai Tsai, Ph.D. Aventis Pharmaceuticals, New Jersey

Dr. J.P. Hsu

- A Gentle Boss
- A Sincere Mentor
- A Beloved Sister
- A Wonderful Friend
- A Great Human Being

Breast Cancer – Sad Facts

- In 2004, there are 216,000 predicted new cases of female breast cancer in the US and 800,000 cases around the world.
- Approximately 30% of these patients will have metastatic breast cancer.
- Approximately 80% of the breast cancer patients will die in 10 years after diagnosis.

Outline of Presentation

- History of cancer clinical trials.
- Principle of chemotherapy.
- Risk factor and predictive models.
- Adjuvant & neoadjuvant cancer treatments.
- Dose-dense treatment.
- Statistical designs and issues.
- Summary.

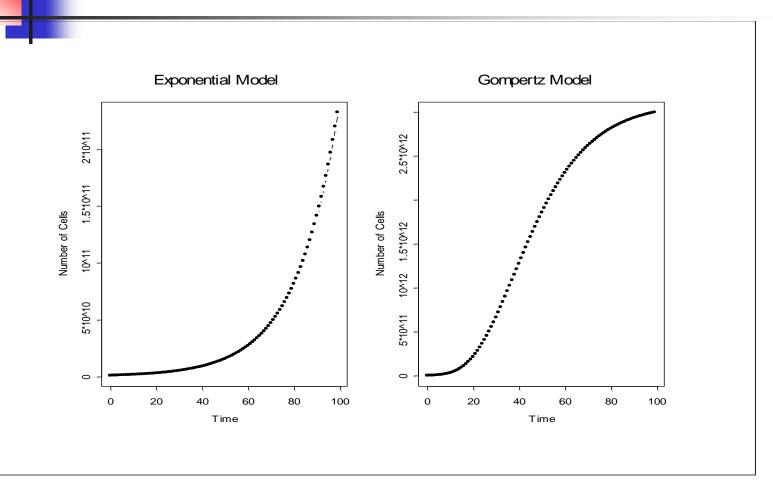
Cancer Research *Historical Note*

- In 1997, the NCI's Clinical Trials Program Review Group recommended to revamp the clinical trials system.
- The primary goal:
 - To accelerate the pace of clinical cancer research.
 - To enable all oncologists in the US to offer patients NCI-sponsored clinical trials.
 - To simplify and standardize procedures to participate.

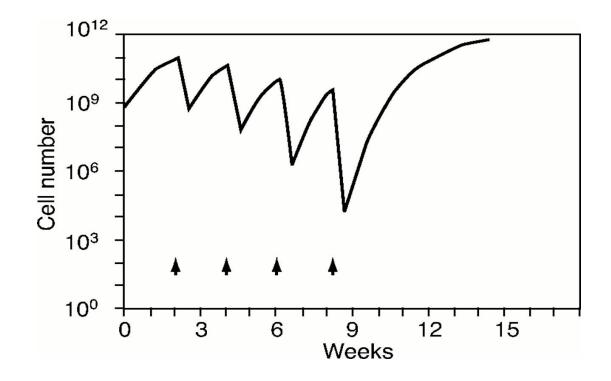
Cancer Research *Historical Note*

- New features of the system:
 - standardization of data collection
 - online data reporting
 - simplified informed consent
 - Established a centralized institutional review board (CIRB) process.
- Established the Cancer Trials Support Unit
 - implement a uniform system of patient registration and data collection for all trials in the network.

Cancer Research *Historical Note*


- The CIRB
 - Shares responsibility for protection of research participants between the local IRB and the CIRB.
 - Results of review are distributed to the participating local IRBs via a confidential website.
 - Fifty-three phase III protocols have now gone through this process, and 139 local IRBs have participated.

CHEMOTHERAPY Principles of treatment


1. Cell cycle : 5 phases
G0 : "Resting cells"
G1 : RNA and protein synthesis
S : DNA synthesis
G2 : RNA and protein synthesis
M : Cell division (mitosis)
2. Goal of a drug:

To interrupt the cell cycle

Cell Growth Models

Basis of Chemotherapy Growth and Kill Model

Anti-Cancer Drug Classification

- Chemotherapy
 - Alkylators, Antibiotics, Antimetabolites, Topoisomerases inhibitors, Mitosis inhibitors, etc.
- Hormonal therapy
 - Steriods, Anti-estrogens, Anti-androgens, LH-RH analogs, Anti-aromatase agents.
- Immunotherapy
 - Inteferon, Interleukin-2, Vaccines.

Breast Cancer Chemotherapy *Agents*

A few frequently used chemo agents:

- Tamoxifin
- Taxanes
 - Paclitaxel, Docetaxel
- Capcitabine, Vinorelbine, Gemcitabine.

Side Effects of Chemotherapy

- Grade 3 or 4 toxicity are most concerned.
- Common toxicities:
 - Neutropenia
 - Anemia, nausea/vomiting
 - Diarrhea, Alopecia
 - Peripheral Neuropathies
 - Mucositits
 - Arthralgia/myalgia

Chemotherapy Side Effects *Causes*

Anticancer drugs kill fast growing cells

- blood cells progenitors
- cells in the digestive tract
- reproductive system
- hair follicles
- Other tissues affected
 - heart and lungs
 - kidney and bladder
 - nerve system

Chemotherapy

Strategies of administration

- Monotherapy
- Combination chemotherapy
 - Combined effect > ind. effect + ind. toxicity
 - Goal: maximize efficacy & minimize toxicity
- Adjuvant chemotherapy
 - Apply when no evidence of cancer
 - Goal: prevention of recurrence
- Neoadjuvant chemotherapy
- Combined modality chemotherapy :
 - Chemotherapy + radiotherapy + surgery
 - Goal: obtain higher response rate

Chemotherapy for Metastatic Breast Cancer

- **Single agent**: often used for women with good performance status.
- **Combination**: usually reserved for patient with symptomatic disease requiring a quicker response.
 - US Oncology trial showed the combination of capecitabine and docetaxel improves RR, TTP, & OS compared with docetaxel alone.
 - ECOG 1193 with doxorubicin and paclitaxel did not improve survival.

Chemotherapy for Metastatic Breast Cancer

- Relapsed after adjuvant therapy: recommended for combination chemotherapy like docetaxel/capecitabine.
 - Capecitabine is recommended for older women with very indolent disease, with no treatment for a long time, and prefer good quality of life.
 - Anthracycline-based regimens are commonly utilized in women without prior adjuvant chemotherapy.

Chemotherapy for Metastatic Breast Cancer

- Sequential or Concurrent:
 - The decisions regarding sequencing depend on the side-effect profiles of various agents.
 - No consensus.

Chemotherapy for Metastatic Breast

Cancer (Pt. with ER/PR-, Her2-, >50 yrs)

Clinical Situation	Combo.	Seq.
Asymptomatic patients with bone metastases	23%	77%
Asymptomatic patients with several small lung metastases	30%	70%
Asymptomatic patients with several small hepatic metastases	38%	62%
Patients with bone metastases with moderate pain requiring oral narcotics	50%	50%
Very symptomatic patients with visceral metastases	85%	15%

Chemotherapy for Metastatic Breast

Cancer (Combination chemo)

Agent	Adjuvant chemotherapy		
	No prior	AC-paclitaxel	AC
	Rx	(> 2yrs)	(>2 yrs.)
AC	29%	-	-
FAC/FEC	26%	6%	3%
Capecitabine/docetaxel	16%	64%	61%
AT (either taxane)	16%	3%	6%
Platinum agent/docetaxel	3%	9%	9%
Capecitabine/paclitaxel	_	3%	6%

Chemotherapy for Metastatic Breast Cancer (Seq. single agent after adj AC chemo)

Agent	1 st line	2 nd line	3 rd line
Docetaxel	65%	30%	3%
Paclitaxel	20%	2%	2%
Capecitabine	8%	33%	23%
Vinorelbine	-	20%	33%
Gemcitabine	2%	8%	35%
Doxorubicin	5%	5%	2%
Cyclophosphamide	-	-	2%
Platinum	-	2%	-

Chemotherapy Strategies to maximize effect

• Chemotherapy spaced out over a long time

- 4 to 12 + months
- Aim: gradually lower the number of cells
- Chemotherapy repeated
 - 3 or 4 weekly
 - Aim: wait for another cell-cycle / phase
- Continuous infusion
 - 1 to 5 + days
 - Aim: for drugs being "phase specific."

Breast Cancer *Risk Factors*

- Key factors:
 - Age
 - Risk increases with age.
 - Reproductive risk factors
 - Higher risk: early menarche &/ late menopause, late pregnancy.
 - LCIS & DCIS increase risk of invasive cancer.
 - Prior history & family history of breast cancer.
 - Genes.
 - Environmental & life style factors.

Breast Cancer *Risk Estimation Model (1)*

- Gail, M., et al., "Projecting Individualized Probabilities of Developing Breast Cancer for White Females Who Are Being Examined Annually," JNCI, 1989.
- Based on BCDDP (Breast Cancer Detection Demonstration Project) database
 - To estimate breast cancer incidence rates.
 - Assume a piecewise baseline hazard rates.
 - Case-control method.
 - For both invasive and *in situ* breast cancer.

Breast Cancer *Risk Estimation Model (1)*

- *Comments* on the model by Gail, M., *et al*.
 - Incorporates more risk factors than prior strategies.
 - More precise point estimate.
 - Not assume any genetic model.
 - Has been used in clinical counseling.
 - Has served as basis for patient selection in prevention trials with tamoxifen.
 - The model underestimates the absolute risk for women with genetic changes.

Breast Cancer *Risk Estimation Model (2)*

Costantino, J., et al., "Validation Studies for Models Projecting Invasive and Total Breast Cancer Incidence," JNCI, 1999.

- Based on SEER database
 - To estimate age-specific invasive breast cancer rates.
 - To estimate baseline hazard rates.
 - Include black women.
 - For invasive breast cancer only.

Breast Cancer Risk Estimation *Statistical Model*

Predictive model of cancer risk (*Gail, et al., JNCI, 1989*)

Factor	Coeff.	Factor	Coeff.
a. Age at menarche	0.094	e. Age (>50)	0.011
b. # prev breast biopsies	0.529	f. b x e	-0.288
c. Age at 1 st live birth	0.219	g. c x d	-0.191
d. # 1 st degree relative with breast cancer	0.958		

Breast Cancer Risk Estimation

Relative risk (Gail, et al., JNCI, 1989)

NBIOPS	AGE					
	< 50 yr		2 50 yr		/ r	
0	1		1			
1	1.698		1.273			
? 2	2.8	2.882		1.620)
AGEMEN	214	1		2-13	< 12	
0	1	1 1		.099		1.207
NUMREL		AGEFLB				
	<20	20-24		25-29		P 30
0	1	1.244		1.548		1.927
1	2.607	2.681		2.756		2.834
? 2	6.798	5.775		4.907		4.169

Total RR (same age) = RR (Table 1) × RR (Table 2) × RR (Table 3)

4/8/2017

Breast Cancer Risk Estimation

Relative risk (Based on Nurses' Health Study)

NBIOPS	AGE			
	< 50	< 50 yr] 50 yr
0	1		1	
1	1.80		1.62	
? 2	-	-		-
AGEMEN	214	1	2-13	< 12
0	1	1		1.10
NUMREL		AGEFLB		
	<20	20-24	25-29	2 30
0	1	1.16	1.33	1.54
1	1.59	1.80	2.04	2.32
? 2	2.52	2.81	3.12	3.48

Total RR (same age) = RR (Table 1) × RR (Table 2) × RR (Table 3)

4/8/2017

Cancer Risk Estimation Model *Use in Practice*

Use of computer program to calculate the risk of recurrence in practice (*ADJUVANT! or Mayo Clinic*).

Risk profile	Node-Pos	Node-Neg
Baseline risk of relapse	40%	31%
Risk of relapse with treatment	20%	17%
Provide the information to patients	76%	84%

Chemoprevention Trials Using Tamoxifen

- *NSABP*: prophylactic tamoxifen with placebo (5 yr):
 Reduce the risk of cancer for all age groups
 - $(<50 \text{ yr: } 44\%, 50\sim59 \text{ yr: } 51\%, >=60 \text{ yr: } 55\%).$
- *Royal Marsden Hospital* tamoxifen prevention trial:
 - No significant difference (*p*=0.8).
- *Italian* tamoxifen prevention trial:
 - No significant difference (*p*=0.2).
- *IBIS-I* prophylactic tamoxifen trial:
 - Reduce cancer risk by 32% (p=0.013). SAE: VTE.
- *STAR* trial: compare Tamoxifen with Raloxifene.

Systemic Therapy for Metastatic Breast Cancer

Key considerations:

- Prognostic factors.
- Sequence of treatment regimen:
 - Sequential single agent or
 - Concurrent combinations.

Systemic Therapy for Metastatic Breast Cancer

- Key prognostic factors:
 - Tumor size
 - Axillary node status
 - Tumor stage: (*T1*: <= 2*cm*; *T2*: 2-5 *cm*; *T3*: >5 *cm*)
 - Histological grade
 - Age
 - ER & PR expressions

Systemic Therapy for Metastatic Breast Cancer

- Sequential single agent & combination:
 - Single agents for patients with good PS
 - Sequencing decision may be affected by side effect profiles.
 - Docetaxel+capecitabine is an effective combination chemotherapy.

Adjuvant Chemotherapy

- The most important recent research affecting utilization of adjuvant chemotherapy:
 - Cancer & leukemia Group B (CALGB) –9741, CALGB-9344, NSABP-B-28 and BCIRG-06
 - Randomized trial
 - Dose dense vs conventional schedule
 - Sequential vs concurrent chemotherapy
 - Trials addressing the inclusion of taxanes

Adjuvant Chemotherapy

- Six months after the initial presentation of the data, about 1/3 of U.S.-based oncologists were utilizing this approach, particularly in younger patients.
 - Patients with node-negative tumors frequently receive adjuvant chemotherapy with shorter duration compared with that in women with node-positive cancers.
 - Adjuvant chemotherapy is also used in elderly women with node-negative tumors.

Adjuvant Chemotherapy Using Taxanes

- Recent studies have integrated the taxanes into the adjuvant setting.
- For node-positive patients, the use of taxanes as adjuvant treatment are shown to be safe and beneficial.
- Docetaxel holds significant promise in the adjuvant setting.
 - Further studies are needed to determine whether it is best given sequentially to, or concurrently with, doxorubicin or epirubicin.

Adjuvant Chemotherapy Using Taxanes - *Example*

Ravdin P. et al (2003): Phase III comparison of docetaxel and paclitaxel in patients with metastatic breast cancer.

Endpoint	Docetaxel	Paclitaxel	p-value
Overall RR	32%	25%	0.06
Median TTP	5.7 months	3.6 months	<0.0001
Median OS	15.4 months	12.7 months	0.03

Adjuvant Chemotherapy Using Taxanes - *Example*

- FDA recently had also approved the use of docetaxel for early breast cancer.
- Use of taxanes in adjuvant setting:
 - Docetaxel ~ 60%.
 - Paclitaxel ~ 40%.

Chemotherapy *Patient Selection*

 Impact of tumor size & nodal status on choice of adj. chemotherapy

Tumor Status	2.2 cm,	2.2 cm,	0.8 cm,
	Node +	Node -	Node -
Adj. Chemo.	93%	80%	8%

Chemotherapy *Patient Selection*

Age:

Age (years)	33	43	55	65	77
Adj. Chemo.	93%	93%	98%	95%	85%

• Use of dose-dense adj. chemo. on high risk pt.

Age (years)	33	43	55	65	77
Adj. Chemo.	46%	45%	28%	29%	15%

Chemotherapy *General settings*

- Neoadjuvant
 - Applied prior to operation.
- Ajuvant
 - Apply when no evidence of cancer
 - Goal: prevention of recurrence

Neoadjuvant Chemotherapy Concept

- The concept of preoperative chemotherapy started in Dr. Fisher's laboratory in the 1980s.
 - Animal studies showed that the tumor kinetics are different when removed compared to treating it before surgery with radiation therapy, tamoxifen or cytotoxic agents.
 - These observations resulted in the concept of preoperative therapy.

Neoadjuvant Chemotherapy Objectives

- Used in disease stage that is potentially resectable
- To reduce tumor burden
- To increase survival
- Not a standard of treatment yet

Neoadjuvant Therapy Usage

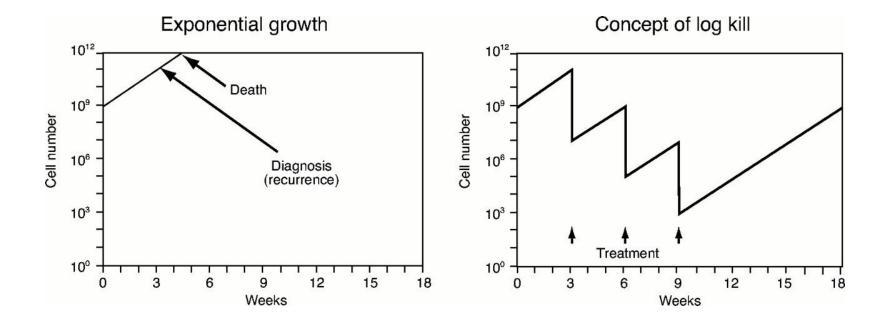
- In US: neoadjuvant therapy often uses chemotherapy.
- In Europe: preoperative endocrine therapy has been extensively used in women with ER+ cancers.
- Chemotherapy and endocrine therapy have equal anti-tumor effects in patients with ER+.

Neoadjuvant Therapy Effect

- Neoadjuvant chemo. often downstages tumors and improve chance of breast conservation.
- DFS and OS are similar to postoperative therapy.
- It is not clear whether tumor size reduction translate into more complete response.

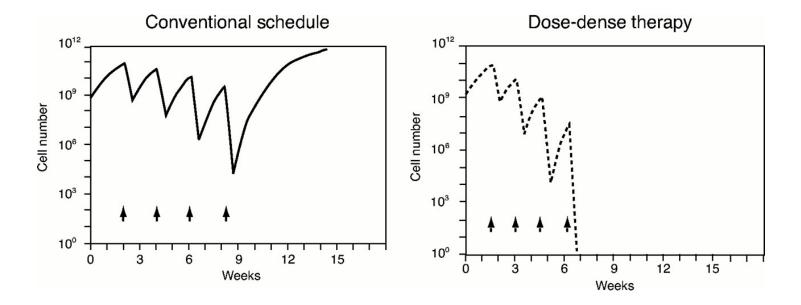
Neoadjuvant Therapy *Strategies*

- New strategies of neoadj. chemo. include dose-intensity chemo, taxanes, and combination regimens.
- It is still unknown that preoperative therapy can be used as a surrogate to determine individual benefit from systemic therapy.
- The neoadjuvant setting is also being utilized to evaluate new systemic agents and predictors of tumor response, including DNA microarray analysis.

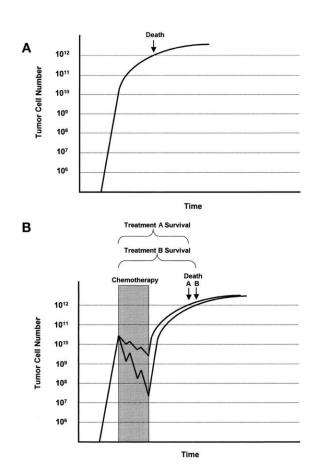

Neoadjuvant Therapy Example

- Example: "New Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer", Jenny C Chang, et al. The Lancet, 2003.
- Findings: Differential patterns of expression of 92 genes correlated with docetaxel response significantly.
 - Sensitive tumors had higher expression of genes involved in cell cycle, cytoskeleton, adhesion, protein transport, protein modification, transcription.
 - Resistant tumors showed increased expression of some transcriptional and signal transduction genes.

Dose-Dense Adjuvant Chemotherapy


- Dose-Dense: the delivery of multiple cycles of chemotherapy using the shortest possible intervals.
- Strategy basis: theoretical model suggests the benefit of re-treatment before tumor regrowth occurs.

Dose-Dense Chemotherapy *Exponential Model*


Exponential growth model: $N_t = N_0 \exp(bt)$

Dose-Dense Chemotherapy *Gompertzian Model*

Gompertzian Model: $N_t = N_0 \exp[\log(N_\infty / N_0)(1 - \exp(-bt))]$

Dose-Dense Chemotherapy *Schematic anti-tumor effects*

Dose-Dense Adjuvant Chemotherapy

An important example: CALGB -9741

Parameters	Dose-dense schedule	Conventional schedule	<i>p</i> -value
Ν	988	985	
4-years DFS	82%	75%	RR=0.74
			(p=0.010)
3-years OS	92%	90%	RR=0.69
			(p=0.013)

Chemotherapy Comments on Dose & Schedule

- Oncology practices usually reduce dose in the adjuvant setting (more likely in older women.)
- Bonadonna *et al*, CALGB-8541, and CALGB-9741 demonstrated reduced disease-free and overall survival when < 85% of the planned dose was delivered in adjuvant cancer setting.
- Most study protocols use growth factor support proactively to allow for delivery of the planned dose when neutrophil counts have not recovered and the dose is scheduled.

Angiogenesis

Angiogenesis - growth of new blood vessels

- Normal angiogenesis
 - Occurs primarily during embryonic development but also in some adult physiological processes.
- Tumor angiogenesis
 - The growth of blood vessels from surrounding tissue to a tumor and is initiated by the release of chemicals by the tumor.

Antiangiogenic Therapy

- This is a targeted therapy.
- ECOG trial:
 - Treatment: capecitabile alone or combined with bevacizumab.
 - Population: heavily pretreated metastatic breast cancer patients
 - Findings: modest improvement of RR, but not TTP.

Antiangiogenic Therapy

Advantages:

- Potential for low toxicity
- Possible lack of drug resistance
- Localized response in the vasculature
- Reliance of many tumour cells on one capillary
- May be effective across a broad range of cancers

Antiangiogenic Combined Therapy

Rationale for potential combined agents:

- Different targets for these agents.
- Lack of cross-resistance patterns.
- Lack of myelosuppression allows administration of full doses of all agents.
- Assumption of additive effects in antitumor activity.

Design of Oncology Clinical Trials Frequently Used Designs

- Two basic designs are widely used:
 - Fixed sample size & Two-stage design.
- Common features of these designs
 - The reference standard for the results is external to the experiment
 - Endpoint may be a surrogate outcome
 - Response is known relatively soon

Design of Oncology Clinical Trials *Variations*

- Scenario for anxiety:
 - Simon 2-stage procedure: 1st stage *p*=0.25, 2nd stage *p*=0.4, □=0.05, □=0.2 □ *N*=(51, 16), (60, 20).
- Three-stage.
- Multiple test procedures.
- Efficacy & toxicity combined evaluation.

Design of Oncology Clinical Trials *Flexible variations*

- Sample size adjustment.
 - E.g., based on conditional power.
- Early termination of ineffective treatment.
- Early termination of unsatisfactory toxicity treatment group.
- Combination of Phase II & III trials.

Design of Oncology Clinical Trials Conditional power

• Decision for sample size adjustment via conditional power of the Lth interim analysis (Lan, et al 1982)

$$CP_{L}(\Delta) = P(T_{K} > C_{K} | T_{L}, \Delta)$$

$$\Phi\left(\begin{cases} C_{K} - T_{L} t_{L}^{1/2} & (1 - t_{L})(N/2)^{1/2} \Delta \end{cases} \times (1 - t_{L})^{1/2} \right)$$

where

• $\{T_K > C_K\}$ is the critical region for the final analysis under H_0 .

From Research to Practice

Practical Issues:

- Much resources have been expended to evaluate new breast cancer treatment interventions.
- Effort in implementation of these advances in practice is not comparable.

From Research to Practice

Q: Have you read the report of CALGB-9741 in JCL, 2003?

Category	Percentage of physician surveyed
No	44%
Read abstract, skimmed article	24%
Read entire article	32%

From Research to Practice

• Possible Remedy:

- Continue medical education has the potential to be a useful component in the clinical research continuum.
- Inform clinicians about available trials and emerging research findings.
- Implement outcomes assessments to evaluate how research advances are being implemented in clinical practice.

Summary

- Great advances on cancer treatment had been made in recent years.
- Statisticians, being analytical and quantitative, have great opportunities to contribute to the design and analyses of studies.
- Many challenging issues still exist & new research are still in great demand.
- Cooperative effort with clinicians and marketing staff is essential to enhance treatment success.